3道计算函数的导数练习题及详细过程A1

天山幽梦 2025-04-05 21:09:13
3道计算函数的导数练习题及详细过程1.已知z=yf(xy,x+2y),f有二阶连续偏导数,求∂z/∂x,∂z/∂y,∂2z/∂x∂y。

本题可以通过直接法和求全微分的方法来求所求的偏导数。

解:一、直接求导法

∂z/∂x=y(f1'y+f2')=y2f1'+yf2';

∂z/∂y=f(xy,x+2)+y(f1'x+f2'*2)

=f(xy,x+2)+xyf1'+2yf2';

进一步求二阶偏导数得:

∂2z/∂x∂y=∂(y2f1'+yf2')/∂x;

=2yf1'+y2(f11'x+2f12')+f2'+y(f21'x+2f22')

=2yf1'+xy2f11'+2y2f12'+f2'+xyf21'+2yf22'

=2yf1'+xy2f11'+y(2y+x)f12'+f2'+2yf22'。

二、全微分法

dz=f(xy,x+2)dy+y[f1'(ydx+xdy)+f2'(dx+2dy)]

=f(xy,x+2)dy+f1'y2dx+xyf1'dy+yf2'dx+2yf2'dy

=(f1'y2+yf2')dx+[f(xy,x+2y)+xyf1'+2yf2']dy,即:

∂z/∂x=f1'y2+yf2',

∂z/∂y=f(xy,x+2y)+xyf1'+2yf2',

进一步得:

∂2z/∂x∂y

=(f11"x+2f12")y2+2yf1'+f2'+y(f21"x+2f22")

=xy2f11"+2y2f12"+2yf1'+f2'+xyf21"+2yf22"

=xy2f11"+y(2y+x)f12"+2yf1'+f2'+2yf22"。

2.函数z=f(x,y)由方程sin(x+y-z)=x+y+6z所确定,求z对x和y的偏导数。

主要内容:通过全微分法、直接求偏导法和构造函数求偏导数法,来求函数z对x和y的偏导数。

一、全微分法:

∵sin(x+y-z)=x+y+6z,

∴cos(x+y-z)*(dx+dy-dz)=x+y+6z,

化简得:

[cos(x+y-z)-1]dx+[cos(x+y-z)-1]dy

=[6+cos(x+y-z)]dz,即:

∂z/∂x=[cos(x+y-z)-1]/[6+cos(x+y-z)];

∂z/∂y=[cos(x+y-z)-1]/[6+cos(x+y-z)]。

二、直接求偏导数法

sin(x+y-z)=x+y+6z

两边同时对x求偏导数,则:

cos(x+y-z)*(dx-dz)=dx+6dz,即:

cos(x+y-z)dx-dx=6dz+cos(x+y-z)dz

[6+cos(x+y-z)]dz=[cos(x+y-z)-1]dx,

所以:∂z/∂x=[cos(x+y-z)-1]/[6+cos(x+y-z)];

同理,方程两边同时对y求偏导数,则:

cos(x+y-z)*(dy-dz)=dy+6dz,

cos(x+y-z)dy-1dy=6dz+cos(x+y-z)dz,

[6+cos(x+y-z)]dz=[cos(x+y-z)-1]dy,

所以:∂z/∂y=[cos(x+y-z)-1]/[6+cos(x+y-z)]。

三、构造函数求偏导数

设F(x,y,z)=sin(x+y-z)-(x+y+6z),则:

F´x=cos(x+y-z)-1,

F´y=cos(x+y-z)-1,

F´z=-cos(x+y-z)-6,

∂z/∂x=-F´x/ F´z

=[cos(x+y-z)-1]/[6+cos(x+y-z)];

∂z/∂y=-F´y/ F´z

=[cos(x+y-z)-1]/[6+cos(x+y-z)]。

3.求z=f(7x+6y,x-y),求z对x,y的所有三阶偏导数

主要内容:

本文通过全微分法、直接求导法、链式求导法等,介绍计算抽象函数z=f(7x+6y,x-y)的所有一阶、二阶和三阶偏导数的主要步骤。

一阶偏导数:

△.全微分求法:

对z=f(7x+6y,x-y)求全微分有:

dz=f1'(7x+6y)+f2'(x-y)

=7f1'dx+6f1'dy+f2'dx-f2'dy

=(7f1'+f2')dx+(6f1'-f2')dy,则:

z对x的一阶偏导数∂z/∂x=7f1'+f2',

z对y的一阶偏导数∂z/∂y=6f1'-f2'。

△.直接求导法:

∂z/∂x=f1'*(7x+6y)'x-f2'(x-y)'x=7f1'+f2';

∂z/∂y=f1'*(7x+6y)'y-f2'(x-y)'y=6f1'-f2'。

二阶偏导数:

∂^2z/∂x^2=7(7f11''+f12'')+(7f21''+f22'')=49f11''+14f12''+f22'';

∂^2z/∂y^2=6(6f11''-f12'')-1(6f21''-f22'')=36f11'-12f12''+f22'';

∂^2z/∂x∂y=∂^2z/∂y∂x=7(6f11''-f12'')+(6f21''-f22'')=42f11''-(1f12''-f22''.

三阶偏导数:

∂^3/∂x^3

=49(7f111'''+f112''')+14(7f121'''+f122''')+(7f221'''+f222''')

=343f111'''+49f112'''+98f121'''+14f122'''+7f221'''+f222''',

=343f111'''+147f112'''+21f122'''+f222''';

∂^3z/∂y^3

=36(6f111'''-f112''')-12(6f121'''-f122''')+(6f221'''-f222''')

=216f111'''-36f112'''-72f121'''+72f122'''+6f221'''-f222''',

=216f111'''-108f112'''+18f122'''-f222''';

∂^3z/∂x^2∂y

=49(6f111'''-f112''')+14(6f121'''-f122''')+(6f221'''-f222''')

=294f111'''-49f112'''+84f121'''-14f122'''+6f221'''-f222''',

=294f111'''+35f112'''-8f122'''-f222''';

∂^3z/∂y^2∂x

=36(7f111'''+f112''')-12(7f121'''+f122''')+(7f221'''+f222''')

=252f111'''+36f112'''-84f121'''-12f122'''+7f221'''+f222'''

=252f111'''-48f112'''-5f122'''+f222'''.

0 阅读:4