本题可以通过直接法和求全微分的方法来求所求的偏导数。
解:一、直接求导法
∂z/∂x=y(f1'y+f2')=y2f1'+yf2';
∂z/∂y=f(xy,x+2)+y(f1'x+f2'*2)
=f(xy,x+2)+xyf1'+2yf2';
进一步求二阶偏导数得:
∂2z/∂x∂y=∂(y2f1'+yf2')/∂x;
=2yf1'+y2(f11'x+2f12')+f2'+y(f21'x+2f22')
=2yf1'+xy2f11'+2y2f12'+f2'+xyf21'+2yf22'
=2yf1'+xy2f11'+y(2y+x)f12'+f2'+2yf22'。
二、全微分法
dz=f(xy,x+2)dy+y[f1'(ydx+xdy)+f2'(dx+2dy)]
=f(xy,x+2)dy+f1'y2dx+xyf1'dy+yf2'dx+2yf2'dy
=(f1'y2+yf2')dx+[f(xy,x+2y)+xyf1'+2yf2']dy,即:
∂z/∂x=f1'y2+yf2',
∂z/∂y=f(xy,x+2y)+xyf1'+2yf2',
进一步得:
∂2z/∂x∂y
=(f11"x+2f12")y2+2yf1'+f2'+y(f21"x+2f22")
=xy2f11"+2y2f12"+2yf1'+f2'+xyf21"+2yf22"
=xy2f11"+y(2y+x)f12"+2yf1'+f2'+2yf22"。
主要内容:通过全微分法、直接求偏导法和构造函数求偏导数法,来求函数z对x和y的偏导数。
一、全微分法:
∵sin(x+y-z)=x+y+6z,
∴cos(x+y-z)*(dx+dy-dz)=x+y+6z,
化简得:
[cos(x+y-z)-1]dx+[cos(x+y-z)-1]dy
=[6+cos(x+y-z)]dz,即:
∂z/∂x=[cos(x+y-z)-1]/[6+cos(x+y-z)];
∂z/∂y=[cos(x+y-z)-1]/[6+cos(x+y-z)]。
二、直接求偏导数法
sin(x+y-z)=x+y+6z
两边同时对x求偏导数,则:
cos(x+y-z)*(dx-dz)=dx+6dz,即:
cos(x+y-z)dx-dx=6dz+cos(x+y-z)dz
[6+cos(x+y-z)]dz=[cos(x+y-z)-1]dx,
所以:∂z/∂x=[cos(x+y-z)-1]/[6+cos(x+y-z)];
同理,方程两边同时对y求偏导数,则:
cos(x+y-z)*(dy-dz)=dy+6dz,
cos(x+y-z)dy-1dy=6dz+cos(x+y-z)dz,
[6+cos(x+y-z)]dz=[cos(x+y-z)-1]dy,
所以:∂z/∂y=[cos(x+y-z)-1]/[6+cos(x+y-z)]。
三、构造函数求偏导数
设F(x,y,z)=sin(x+y-z)-(x+y+6z),则:
F´x=cos(x+y-z)-1,
F´y=cos(x+y-z)-1,
F´z=-cos(x+y-z)-6,
∂z/∂x=-F´x/ F´z
=[cos(x+y-z)-1]/[6+cos(x+y-z)];
∂z/∂y=-F´y/ F´z
=[cos(x+y-z)-1]/[6+cos(x+y-z)]。
主要内容:
本文通过全微分法、直接求导法、链式求导法等,介绍计算抽象函数z=f(7x+6y,x-y)的所有一阶、二阶和三阶偏导数的主要步骤。
一阶偏导数:
△.全微分求法:
对z=f(7x+6y,x-y)求全微分有:
dz=f1'(7x+6y)+f2'(x-y)
=7f1'dx+6f1'dy+f2'dx-f2'dy
=(7f1'+f2')dx+(6f1'-f2')dy,则:
z对x的一阶偏导数∂z/∂x=7f1'+f2',
z对y的一阶偏导数∂z/∂y=6f1'-f2'。
△.直接求导法:
∂z/∂x=f1'*(7x+6y)'x-f2'(x-y)'x=7f1'+f2';
∂z/∂y=f1'*(7x+6y)'y-f2'(x-y)'y=6f1'-f2'。
二阶偏导数:
∂^2z/∂x^2=7(7f11''+f12'')+(7f21''+f22'')=49f11''+14f12''+f22'';
∂^2z/∂y^2=6(6f11''-f12'')-1(6f21''-f22'')=36f11'-12f12''+f22'';
∂^2z/∂x∂y=∂^2z/∂y∂x=7(6f11''-f12'')+(6f21''-f22'')=42f11''-(1f12''-f22''.
三阶偏导数:
∂^3/∂x^3
=49(7f111'''+f112''')+14(7f121'''+f122''')+(7f221'''+f222''')
=343f111'''+49f112'''+98f121'''+14f122'''+7f221'''+f222''',
=343f111'''+147f112'''+21f122'''+f222''';
∂^3z/∂y^3
=36(6f111'''-f112''')-12(6f121'''-f122''')+(6f221'''-f222''')
=216f111'''-36f112'''-72f121'''+72f122'''+6f221'''-f222''',
=216f111'''-108f112'''+18f122'''-f222''';
∂^3z/∂x^2∂y
=49(6f111'''-f112''')+14(6f121'''-f122''')+(6f221'''-f222''')
=294f111'''-49f112'''+84f121'''-14f122'''+6f221'''-f222''',
=294f111'''+35f112'''-8f122'''-f222''';
∂^3z/∂y^2∂x
=36(7f111'''+f112''')-12(7f121'''+f122''')+(7f221'''+f222''')
=252f111'''+36f112'''-84f121'''-12f122'''+7f221'''+f222'''
=252f111'''-48f112'''-5f122'''+f222'''.